Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38682465

RESUMEN

Vitamin E (VE) is a potent nutritional antioxidant that is critical in alleviating poultry oxidative stress. However, the hydrophobic nature and limited stability of VE restrict its effective utilization. Nanotechnology offers a promising approach to enhance the bioavailability of lipophilic vitamins. The objective of this experiment was to investigate the effects of different sources and addition levels of VE on the growth performance, antioxidant capacity, VE absorption site, and pharmacokinetics of Arbor Acres (AA) broilers. Three hundred and eighty-four 1-d-old AA chicks were randomly allocated into four groups supplemented with 30 and 75 IU/kg VE as regular or nano. The results showed that dietary VE sources had no significant impact on broiler growth performance. However, chickens fed 30 IU/kg VE had a higher average daily gain at 22 to 42 d and 1 to 42 d, and lower feed conversion ratio at 22 to 42 d than 75 IU/kg VE (P < 0.05). Under normal feeding conditions, broilers fed nano VE (NVE) displayed significantly higher superoxide dismutase (SOD) activity and glutathione peroxidase (GSH-Px) enzyme activities and lower malonic dialdehyde (MDA) concentration (P < 0.05). Similarly, NVE had a higher antioxidant effect in the dexamethasone-constructed oxidative stress model. It was found that nanosizing technology had no significant effect on the absorption of VE in the intestinal tract by examining the concentration of VE in the intestinal tract (P > 0.05). However, compared to broilers perfused with regular VE (RVE), the NVE group displayed notably higher absorption rates at 11.5 and 14.5 h (P < 0.05). Additionally, broilers perfused with NVE showed a significant increase in the area under the concentration versus time curve from zero to infinity (AUC0-∞), mean residence time (MRT0-∞), elimination half-life (t1/2z), and peak concentration (Cmax) of VE in plasma (P < 0.05). In summary, nanotechnology provides more effective absorption and persistence of VE in the blood circulation for broilers, which is conducive to the function of VE and further improves the antioxidant performance of broilers.


With the rapid development of intensive farming, factors such as high temperature, harmful gases, high-fat and high-protein diets, and changes in feeding methods have become causes of oxidative stress in animals. Studies have shown that oxidative stress decreases livestock feed intake and slows growth in animals, thereby affecting the quality of livestock products. Antioxidants and micronutrients are commonly added to animal feed to reduce the effects of oxidative stress. Since the progress in nanotechnology, nanovitamins have gained extensive recognition due to their novel qualities, including a high level of adsorption capacity and low toxicity. Therefore, the present study compared the effects of dietary supplementation with different sources of vitamin E (regular, RVE vs. nano, NVE) and varying inclusion levels on the growth performance, antioxidant capacity, VE absorption sites, and pharmacokinetics in AA broilers. The results indicated that supplementing broiler diets with NVE provides superior antioxidant benefits compared to RVE. This improvement is attributed to the enhanced absorption efficiency and extended half-life of NVE, both contributing to increased antioxidant performance of broilers.


Asunto(s)
Alimentación Animal , Antioxidantes , Pollos , Dieta , Suplementos Dietéticos , Vitamina E , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Alimentación Animal/análisis , Dieta/veterinaria , Vitamina E/administración & dosificación , Vitamina E/farmacocinética , Vitamina E/farmacología , Suplementos Dietéticos/análisis , Estrés Oxidativo/efectos de los fármacos , Nanopartículas/química , Nanopartículas/administración & dosificación , Fenómenos Fisiológicos Nutricionales de los Animales , Masculino , Distribución Aleatoria
2.
Langmuir ; 40(18): 9676-9687, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38663019

RESUMEN

Prehydrolysis liquid (PHL) from dissolving pulp and biorefinery industries is rich in saccharides and lignin, being considered as a potential source of value-added materials and platform molecules. This study proposed an environmentally friendly and simple method to prepare morphologically controllable hollow lignin nanoparticles (LNPs) and levulinic acid (LA) from PHL. In the first step, after hydrothermal treatment of PHL with p-toluenesulfonic acid (p-TsOH), lignin with a uniform molecular weight was obtained to prepare LNPs. The prepared LNPs have an obvious hollow structure, with an average size of 490-660 nm, and exhibit good stability during 30 days of storage. When the as-obtained LNPs were used as a sustained-release agent for amikacin sulfate, the encapsulation efficiency reached over 70% and the release efficiency within 40 h reached 69.2% in a pH 5.5 buffer. Subsequently, the remaining PHL that contains saccharides was directly used for LA production under the catalysis of p-TsOH. At 150 °C for 1.5 h, the LA yield reached 58.4% and remained at 56% after 5 cycles of p-TsOH. It is worth noting that only p-TsOH was used as a reactive reagent throughout the entire preparation process. Overall, this study provided a novel pathway for the integrated utilization of PHL and showed the immense potential of the preparation and application of LNPs.


Asunto(s)
Portadores de Fármacos , Ácidos Levulínicos , Lignina , Nanopartículas , Populus , Ácidos Levulínicos/química , Lignina/química , Nanopartículas/química , Populus/química , Portadores de Fármacos/química , Madera/química , Hidrólisis , Tamaño de la Partícula
3.
Int J Biol Macromol ; 265(Pt 2): 130796, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38479665

RESUMEN

Supercapacitors, pivotal in mitigating the energy crisis stemming from dwindling fossil fuel reservoirs, necessitate meticulous consideration of electrode material preparation. While lignin-derived carbon materials sourced sustainably exhibit commendable potential as electrode materials, their intrinsic low capacitance limits widespread utilization. Herein, nitrogen atom doping of lignin (CNL) was accomplished employing a chemical modification technique employing cyanuric chloride as a dopant. The resultant nitrogen content measured at 2.85 %. Subsequent to CNL carbonation, the generated C3N4 was selectively confined to the internal surface of the CNLMS-800 through a domain-limited activation method, thereby rendering it suitable for deployment as a supercapacitor electrode material. CNLMS-800 manifests a substantial specific surface area of 1778.0 m2 g-1 and a concomitantly diminutive pore size of 2.6 nm. Noteworthy, the specific capacitance of CNLMS-800 attains 473.0 F g-1 at a current density of 0.5 A g-1 in a 6 M KOH electrolyte. The resultant energy density reaches 39.0 Wh kg-1 at a power density of 338.0 W kg-1. Crucially, even after 20,000 charge/discharge cycles at a current density of 10 A g-1, the capacitance retention attains an impressive 87.5 % in the KOH electrolyte. This innovative utilization of sustainable resources for electrode fabrication epitomizes a seminal advancement in the field of energy technology.


Asunto(s)
Líquidos Corporales , Lignina , Electrodos , Nitrógeno , Electrólitos
4.
Int J Biol Macromol ; 265(Pt 1): 130906, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38493611

RESUMEN

The pre-hydrolysis liquor (PHL) produced during pulp dissolution and biomass refining is mainly composed of hemicellulose and lignin, and it is a potential source for production of value-added materials and platform chemicals; however, their utilization has been a serious challenge. In this study, we proposed a green and simple strategy to simultaneously prepare size-controlled functional lignin nanoparticles (LNPs) and levulinic acid (LA) from PHL as the raw material. The as-prepared LNPs exhibited remarkable stability thanks to the presence of saccharides with abundant oxygen-containing groups and surface charges, which prevented aggregation and maintained long-term storage stability. Trace amounts of the LNPs (≤ 0.2 wt%) could stabilize various Pickering emulsions, even with oil-to-water ratios as high as 5:5 (v/v). Subsequently, the remaining PHL was directly used to produce LA without adding a catalyst; under optimal conditions (160 °C and 1 h), the yield of LA was 56.3 % based on the dry saccharide content in the raw PHL. More importantly, p-toluenesulfonic acid (p-TsOH), the only reactive reagent used during the entire preparation process, including the two preparation steps of the LNPs and LA, was reusable, and the recovery rate was >70 % after five cycles. Overall, this green and simple strategy effectively and comprehensively utilized the PHL and showed potential for producing biobased nanomaterials and platform chemicals.


Asunto(s)
Ácidos Levulínicos , Nanopartículas , Populus , Lignina/química , Hidrólisis , Madera/química , Carbohidratos/análisis
5.
Int J Biol Macromol ; 266(Pt 2): 130619, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38460629

RESUMEN

Lignin, a natural polyphenol polymer, is a biocompatible, cost-effective and accessible material. To fully utilize the benefits of lignin, it is crucial to transform its complex macromolecules into nanoscale particles in a single solvent. In this research, an assembly-mediated internal cross-linking method in single solvent was proposed to manufacture cross-linked lignin colloidal particles with nanoscale particle size controlled to be around 50 nm. Then, cross-linked lignin composite particles with a unique "patchy" structure for dental cleansing were obtained by rapidly grafting the cross-linked lignin colloidal particles onto the surface of silica microspheres through the bridging effect of silane coupling agent. The resulting composite particles have rivets with adjustable hardness, significantly lower than traditional abrasives like silica in both hardness and modulus. Through the group cleansing behavior of soft interlocking, a breakthrough has been achieved in the high solid content agglomeration friction mode of traditional abrasives, which effectively reduces tooth wear and exhibits an excellent plaque removal effect.


Asunto(s)
Lignina , Lignina/química , Tamaño de la Partícula , Dióxido de Silicio/química , Reactivos de Enlaces Cruzados/química , Dureza , Microesferas , Humanos , Coloides/química , Nanopartículas/química
6.
Int J Biol Macromol ; 256(Pt 1): 127878, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37949269

RESUMEN

Nowadays, great effort has been devoted to designing biomass-derived nanoscale carbon fibers with controllable fibrous morphology, high conductivity, big specific surface area and multifunctional characteristics. Herein, a green and renewable strategy is performed to prepare the biomass-based nanoscale carbon fibers for fire warning sensor, supercapacitor and moist-electric generator. This preparation strategy thoroughly gets over the dependence of petroleum-based polymeride, and effectually improves the energy storage capacity, sensing sensitivity, humidity power generation efficiency of the obtaining biomass-based carbon nanofibers. Without the introduction of any active components or pseudocapacitive materials, the specific capacitance and energy density for biomass-based nanoscale carbon fibers achieve 143.58 F/g and 19.9 Wh/kg, severally. The biomass-based fire sensor displays excellent fire resistance, stability, and flame sensitivity with a response time of 2 s. Furthermore, the biomass-based moist-electric generator shows high power generation efficiency. The output voltage and current of five series connected and parallel-connected biomass-based moist-electric generators reaches 4.30 V and 43 µA, respectively. Notably, as the number of biomass-based moist-electric generators in series or parallel increases, the overall output voltage and current of the device system have a linear relationship. This work proposes a self-powered fire prediction system based on nanoscale carbon fibers that integrates sensing, power generation, and energy storage functions.


Asunto(s)
Carbono , Nanofibras , Fibra de Carbono , Biomasa , Capacidad Eléctrica
7.
Langmuir ; 40(1): 554-560, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38111205

RESUMEN

Nanoscale composite lignin colloids were prepared on a large scale with a process of assembly-mediated internal cross-linking in a good solvent, thus possessing absolutely nanoscale dimensions, excellent robustness, and less aggregation. The therefore prime UV resistance and various natural visible colors contribute to the preservation and beautification of skin.

8.
Int J Biol Macromol ; 251: 126325, 2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37579896

RESUMEN

One more effective measure to solve the energy crisis caused by the shortage of fossil energy is to convert natural renewable resources into high-value chemical products for electrochemical energy storage. Lignin has broad application prospects in this field. In this paper, three kinds of lignin with different molecular weights were obtained by the ethanol/water grading of Kraft lignin (KL). Then, different surface morphology lignin microspheres were prepared by spray drying. Finally, petal-like microspheres were successfully prepared by mixing and grinding the above four kinds of surface morphology lignin microspheres with potassium ferrate and cyanogen chloride and carbonizing at 800 °C and were later used as electrode materials for supercapacitors. Compared with the other microspheres, LMS-F3@Fe3C has the highest specific surface area (1041.42 m2 g-1), the smallest pore size (2.36 nm) and the largest degree of graphitization (ID/IG = 1.06). At a current density of 1 A g-1, the maximum specific capacitance is 786.7 F g-1. At a power density of 1000 W kg-1, the high energy density of 83.3 Wh kg-1 is displayed. This work provides a novel approach to the modulation of surface morphology and structure of lignin microspheres.

9.
Artículo en Inglés | MEDLINE | ID: mdl-37642924

RESUMEN

As an important dietary supplement, S-adenosylmethionine (SAM) is currently synthesized by methionine adenosyltransferase (MAT) using ATP and methionine as substrates. However, the activity of MAT is severely inhibited by product inhibition, which limits the industrial production of SAM. Here, MAT from Bacteroides fragilis (BfMAT), exhibiting relatively low product inhibition and moderate specific activity, was identified by gene mining. Based on molecular docking, residues within 5 Å of ATP in BfMAT were subjected to mutagenesis for enhanced catalytic activity. Triple variants M3-1 (E42M/E55L/K290I), M3-2 (E42R/E55L/K290I), and M3-3 (E42C/E55L/K290I) with specific activities of 1.83, 1.81, and 1.94 U/mg were obtained, which were 110.5-125.6% higher than that of the wild type (WT). Furthermore, compared with WT, the Km values of M3-1 and M3-3 were decreased by 31.4% and 60.6%, leading to significant improvement in catalytic efficiency (kcat/Km) by 322.5% and 681.1%. All triple variants showed shifted optimal pH from 8.0 to 7.5. Moreover, interaction analysis suggests that the enhanced catalytic efficiency may be attributed to the decreased electrostatic interactions between ATP and the mutation sites (E42, E55, and K290). Based on MD simulation, coulomb energy and binding free energy analysis further reveal the importance of electrostatic interactions for catalytic activity of BfMAT, which could be an efficient strategy for improving catalytic performance of MATs.

10.
Int J Biol Macromol ; 246: 125574, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37385319

RESUMEN

Recently, with the pursuit of high-efficiency electromagnetic wave absorption (EMWA) and electrochemical energy storage (EES) materials, multifunctional lignin-based composites have attracted significant interest due to their low cost, vast availability, and sustainability. In this work, lignin-based carbon nanofibers (LCNFs) was first prepared by electrospinning, pre-oxidation and carbonization processes. Then, different content of magnetic Fe3O4 nanoparticles were deposited on the surface of LCNFs via the facile hydrothermal way to produce a series of bifunctional wolfsbane-like LCNFs/Fe3O4 composites. Among them, the synthesized optimal sample (using 12 mmol of FeCl3·6H2O named as LCNFs/Fe3O4-2) displayed excellent EMWA ability. When the minimum reflection loss (RL) value achieved -44.98 dB at 6.01 GHz with an thickness of 1.5 mm, and the effective absorption bandwidth (EAB) was up to 4.19 GHz ranging from 5.10 to 7.21 GHz. For supercapacitor electrode, the highest specific capacitance of LCNFs/Fe3O4-2 reached 538.7 F/g at the current density of 1 A/g, and the capacitance retention remained at 80.3 %. Moreover, an electric double layer capacitor of LCNFs/Fe3O4-2//LCNFs/Fe3O4-2 also showed a remarkable power density of 7755.29 W/kg, outstanding energy density of 36.62 Wh/kg and high cycle stability (96.89 % after 5000 cycles). In short, the construction of this multifunctional lignin-based composites has potential applications in electromagnetic wave (EMW) absorbers and supercapacitor electrodes.


Asunto(s)
Nanofibras , Nanopartículas , Lignina , Carbono , Capacidad Eléctrica
11.
Int J Biol Macromol ; 242(Pt 2): 124751, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37164137

RESUMEN

To achieve sustainable whole process of carbon-fiber production and high-value utilization of lignin, one-step ethanol fractionation followed by coaxial electrospinning was applied to produce lignin-based monocomponent carbon-fiber. To elucidate the mechanism, hydrothermal extracted poplar lignin (HPL) were obtained to be divide into two parts through ethanol fractionation, in which the ethanol-soluble lignin (ESL) was eletrcospun into fiber precursors. Then, to verify the universality of this method, four more lignin were extracted to produce fiber precursors, after which five kinds of carbon fibers were prepared by carbonization of the corresponding precursors. Structural analysis showed that ESL of HPL is a small and highly branched three-dimensional stereomolecules. Combined with the SEM results of fiber precursors, the mechanism which hydrogen bonding promotes fiber formation was elucidated. Among all five samples, carbon-fiber prepared from HPL possesses the minimum fiber diameter of 557 nm, the smallest interplanar spacing of 0.3909 nm, ID/IG value of 0.6345 and the largest specific surface area of 408.15 m2/g. This work proposes a universal method to prepare lignin-based monocomponent carbon-fiber, in which carbon-fibers prepared from HPL exhibits the best comprehensive performance and can be applied to capture radioactive iodine.


Asunto(s)
Lignina , Neoplasias de la Tiroides , Humanos , Lignina/química , Carbono/química , Etanol , Radioisótopos de Yodo , Fibra de Carbono
12.
Int J Biol Macromol ; 242(Pt 4): 125032, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37245752

RESUMEN

Recently, multifunctional lignin-based materials are gaining more and more attention due to their great potential for low-cost and sustainability. In this work, to obtain both an excellent supercapacitor electrode and an outstanding electromagnetic wave (EMW) absorber, a series of multifunctional nitrogen-sulphur (N-S) co-doped lignin-based carbon magnetic nanoparticles (LCMNPs) had been successfully prepared through Mannich reaction at different carbonization temperature. As compared with the directly carbonized lignin carbon (LC), LCMNPs had more nano-size structure and higher specific surface area. Meanwhile, with the increase of carbonization temperature, the graphitization of the LCMNPs could also be effectively improved. Therefore, LCMNPs-800 displayed the best performance advantages. For the electric double layer capacitor (EDLC), the optimal specific capacitance of LCMNPs-800 reached 154.2 F/g, and the capacitance retention after 5000 cycles was as high as 98.14 %. When the power density was 2204.76 W/kg, the energy density achieved 33.81 Wh/kg. In addition, N-S co-doped LCMNPs also exhibited strong electromagnetic wave absorption (EMWA) ability, whose the minimum reflection loss (RL) value of LCMNPs-800 was realized -46.61 dB at 6.01 GHz with an thickness of 4.0 mm, and the effective absorption bandwidth (EAB) was up to 2.11 GHz ranging from 5.10 to 7.21 GHz, which could cover the C-band. Overall, this green and sustainable approach is a promising strategy for the preparation of high-performance multifunctional lignin-based materials.


Asunto(s)
Lignina , Nanopartículas de Magnetita , Carbono , Nitrógeno , Azufre , Radiación Electromagnética
13.
Poult Sci ; 102(7): 102764, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37216885

RESUMEN

The total number of intestinal microbiotas is low, and the intestinal tract develops rapidly and imperfectly at the embryonic stage. Embryonic period as a particular physiological stage is an important time window to explore how to regulate organismal health by probiotics. Therefore, this experiment was conducted to investigate the effect of embryonic injection of Lactobacillus plantarum PA01 at embryonic d 14 (E14) on the microbiome of the contents of the gizzard, cecum at embryonic d 20 (E20) and cecum at d 1 posthatch (D1) by 16S rRNA sequencing. Results showed that PA01 had no significant effect on broiler body weight and yolk sac weight at E20 and D1 (P > 0.05). PA-01 altered the Shannon index and ß diversity of the gizzard at E20 (P < 0.05), increased the abundance of Firmicutes (P < 0.05), and decreased the relative abundance of Proteobacteria, Bacteroidota, and Actinobacteriota (P < 0.05). At the genus level of the microbiota, PA01 significantly increased the relative abundance of Lactiplantibacillus (P < 0.05). At 20 embryos, PA01 altered the α and ß diversity indices (P < 0.05) and decreased the relative abundance of Salmonella (P < 0.05) of the cecal microbiota. The biomarkers of PA01 group were Lactobacillales, Blautia, Lachnospiraceae, and Asinibacterium. Embryonic injection of PA01 altered the E20 intestinal microbes. PA01 altered the ß-diversity index of the 1-day-old cecum (P < 0.05), and there was no significant effect on microbial composition at the phylum and genus level (P > 0.05). LefSe analysis revealed that the biomarkers of the PA01 group were Lactobacillaceae, Lactiplantibacillus, Moraxellaceae, and Acinetobacter. Biomarkers in the Con group were Devosia, Bacillus, Nordella, Mesorhizobium, and Pseudolabrys. PA01 increased acetic acid in the gastrointestinal tract at E20 along with acetic and butyric acid in cecum of 1-day-old. In conclusion, embryo-injected L. plantarum PA01 altered the structure and metabolites of the microbial flora before and after hatching, in particular promoting the colonization of Lactobacillus.


Asunto(s)
Lactobacillus plantarum , Animales , Lactobacillus plantarum/química , Pollos/fisiología , ARN Ribosómico 16S/genética , Tracto Gastrointestinal , Intestinos , Bacteroidetes
14.
Int J Biol Macromol ; 239: 124268, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37003375

RESUMEN

Recently, the application of lignin activation by demethylation to improve reactivity and enrich multiple functions has intensively attracted attention. However, it is still challenge up to now due to the low reactivity and complexity of lignin structure. Here, an effective demethylation way was explored by microwave-assisted method for substantially enhancing the hydroxyl (-OH) content and retaining the structure of lignin. Then, the optimum demethylated lignin was used to removal heavy metal ions and promote wound healing, respectively. In detail, for microwave-assisted demethylated poplar lignin (M-DPOL), the contents of phenolic (Ar-OH) and total hydroxyl (Tot-OH) groups reached the maximum for 60 min at 90 °C in DMF with 7.38 and 9.13 mmol/g, respectively. After demethylation, with this M-DPOL as lignin-based adsorbent, the maximum adsorption capacity (Qmax) for Pb2+ ions reached 104.16 mg/g. Based on the isotherm, kinetic and thermodynamic models analyses, the chemisorption occurred in monolayer on the surface of M-DPOL, and all adsorption processes were endothermic and spontaneous. Meanwhile, M-DPOL as a wound dressing had excellent antioxidant property, outstanding bactericidal activity and remarkable biocompatibility, suggesting that it did not interfere with cell proliferation. Besides, the wounded rats treated with M-DPOL significantly promoted its formation of re-epithelialization and wound healing of full-thickness skin defects. Overall, microwave-assisted method of demethylated lignin can offer great advantages for heavy metal ions removal and wound care dressing, which facilitates high value application of lignin.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Ratas , Animales , Lignina/química , Adsorción , Metales Pesados/química , Iones , Vendajes , Contaminantes Químicos del Agua/química , Cinética
15.
Compr Rev Food Sci Food Saf ; 22(3): 2267-2291, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37043598

RESUMEN

Polyphenol oxidase (PPO) is a metalloenzyme with a type III copper core that is abundant in nature. As one of the most essential enzymes in the tea plant (Camellia sinensis), the further regulation of PPO is critical for enhancing defensive responses, cultivating high-quality germplasm resources of tea plants, and producing tea products that are both functional and sensory qualities. Due to their physiological and pharmacological values, the constituents from the oxidative polymerization of PPO in tea manufacturing may serve as functional foods to prevent and treat chronic non-communicable diseases. However, current knowledge of the utilization of PPO in the tea industry is only available from scattered sources, and a more comprehensive study is required to reveal the relationship between PPO and tea obviously. A more comprehensive review of the role of PPO in tea was reported for the first time, as its classification, catalytic mechanism, and utilization in modulating tea flavors, compositions, and nutrition, along with the relationships between PPO-mediated enzymatic reactions and the formation of functional constituents in tea, and the techniques for the modification and application of PPO based on modern enzymology and synthetic biology are summarized and suggested in this article.


Asunto(s)
Camellia sinensis , Catecol Oxidasa/metabolismo , Oxidación-Reducción ,
16.
Int J Biol Macromol ; 238: 123938, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-36898468

RESUMEN

The inherent complexity and large particle size of native-state lignin are the major factors limiting its performance in high value-added materials. To realize the high-value application of lignin, nanotechnology is a promising method. Therefore, we offer a nanomanufacturing approach to produce lignin nanoparticles with uniform size, regular shape and high yield using electrospray. They are efficient in stabilizing oil-in-water (O/W) Pickering emulsions that remain for one month. Lignin has the abilities to demonstrate broad-spectrum UV resistance and green antioxidant properties in advanced materials, taking advantage of its inherent chemical characteristics. In addition, lignin has high safety for topical products according to an in vitro cytotoxicity test. In addition, the nanoparticle concentrations used in the emulsion were as low as 0.1 mg/ml, which maintained UV-resistant ability and overcame traditional lignin-based materials with unfavorable dark colors. Overall, lignin nanoparticles not only act as stabilizers at the water-oil interface but also realize the high functionality of lignin.


Asunto(s)
Antioxidantes , Nanopartículas , Emulsiones/química , Antioxidantes/farmacología , Lignina/química , Nanopartículas/química , Tamaño de la Partícula , Agua/química
17.
Int J Biol Macromol ; 234: 123668, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36796567

RESUMEN

Multifunctional lignin-based adsorbents, which have shown great application prospect, have attracted widespread attention. Herein, a series of multifunctional lignin-based magnetic recyclable adsorbents were prepared from carboxymethylated lignin (CL), which was rich in carboxyl group (-COOH). After optimizing the mass ratio of CL to Fe3O4, the prepared CL/Fe3O4 (3:1) adsorbent showed efficient adsorption capacities for heavy metal ions. The kinetic and isotherm nonlinear fitting studies revealed that the adsorption process followed the second-order kinetic and Langmuir models, and the maximum adsorption capacities (Qmax) of CL/Fe3O4 (3:1) magnetic recyclable adsorbent for Pb2+, Cu2+ and Ni2+ ions reached 189.85, 124.43 and 106.97 mg/g, respectively. Meanwhile, after 6 cycles, the adsorption capacities of CL/Fe3O4 (3:1) for Pb2+, Cu2+ and Ni2+ ions could keep at 87.4 %, 83.4 % and 82.3 %, respectively. In addition, CL/Fe3O4 (3:1) also exhibited excellent electromagnetic wave absorption (EMWA) performance with a reflection loss (RL) of -28.65 dB at 6.96 GHz under the thickness of 4.5 mm, and its effective absorption bandwidth (EAB) achieved 2.24 GHz (6.08-8.32 GHz). In short, the prepared multifunctional CL/Fe3O4 (3:1) magnetic recyclable adsorbent with outstanding adsorption capacity for heavy metal ions and superior EMWA capability opens a new avenue for the diversified utilization of lignin and lignin-based adsorbent.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Lignina , Plomo , Iones , Radiación Electromagnética , Adsorción , Contaminantes Químicos del Agua/análisis , Cinética
18.
Int J Biol Macromol ; 232: 123383, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-36693601

RESUMEN

Octenyl succinic anhydride modified starch is a common green and safe emulsifier. Although the conventional pretreatment method of free enzyme hydrolysis increases the hydroxyl content on the starch surface, thus improving the grafting degree of octenyl succinic anhydride and the amphiphilicity of the modified starch, the amylose and amylopectin structures are indiscriminately hydrolyzed, reducing the emulsion stability of modified starch. In this work, α-amylase organic-inorganic hybrid nanoflower biocatalyst is designed and synthesized for pretreatment of synthetic octenyl succinic anhydride modified starch. The α-amylase organic-inorganic hybrid nanoflower biocatalyst with a unique micro-nano spatial structure can selectively hydrolyze the amylopectin and protect the amylose of starch. The amylose ratio of starch pretreated by nanoflower biocatalyst is about twice that of starch pretreated by free enzyme, reaching 22.62 %. Meanwhile, the granular structure of starch is not damaged. The obtained octenyl succinic anhydride modified starch exhibits a high degree of substitution, up to 0.0213. The emulsion prepared with this modified starch maintains excellent emulsifying properties and stability. This study provides a novel strategy for the preparation of octenyl succinic anhydride modified starch with excellent emulsifying properties, which promote the application of octenyl succinic anhydride modified starch in food, pharmaceutical and cosmetic industries.


Asunto(s)
Amilopectina , Amilosa , Amilosa/química , Emulsiones/química , Enzimas Inmovilizadas , Hidrólisis , Anhídridos Succínicos/química , Almidón/química , alfa-Amilasas
19.
ACS Appl Mater Interfaces ; 15(1): 1969-1983, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36573338

RESUMEN

For the application of lignin-based materials, it is necessary to develop simple and efficient chemical modification strategies for lignin. In this work, the iodization modification strategy is selected to improve the specific surface area and graphitization degree of lignin-based carbon fibers. The introduction of an iodine atom can effectively increase the π electron cloud density of the lignin aromatic hydrocarbon structure. High π electron cloud density can effectively enhance the π-π interaction force between lignin molecules (the supramolecular bonds). The biomass precursors with this intermolecular microstructure exhibit good thermal stability and can maintain the original fibrous morphology during high-temperature treatment, which is beneficial for increasing the specific surface area of biomass-based carbon materials. Furthermore, this intermolecular microstructure also contributes to the graphitization of biomass precursor materials and reduces the spacing of graphite micro-lamellae. The obtained lignin-based carbon fibers with iodization modification exhibit a specific capacitance of 333 F/g at a current density of 1 A/g in the three-electrode tests in 6 M KOH solution. As the assembled supercapacitor, the specific capacitance of lignin-based carbon fibers reaches 87 F/g in 1 M Na2SO4 solution. Compared to other modification processes for raw materials, this strategy is simple and efficient and has reference value for the synthesis of other high-performance biomass-based materials.

20.
Int J Biol Macromol ; 225: 219-226, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36343839

RESUMEN

A novel binary solvent system consisting of alcohols (e.g., methanol, ethanol, isopropanol) and dichloromethane was developed as an efficient dissolution system for dissolving various types of lignin. It was found that in this dissolution system, adjusting the volume ratio of alcohol and dichloromethane will significantly affect the solubility of lignin. At the same time, this study proposed that the reason why the solvent can dissolve lignin was the hydrophobic skeleton and hydrophilic groups can be solvated by dichloromethane and alcohols respectively, which significantly promoted the dissolution of lignin. Furthermore, the solvent did not significantly alter the structure of the lignin. The proposed novel solvent is simple, efficient, versatile and flexible, can adapt to the high diversity of lignin, and has broad application prospects.


Asunto(s)
Lignina , Cloruro de Metileno , Solventes/química , Lignina/química , Solubilidad , Etanol
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...